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Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in
cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse
physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance.
Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experi-
mental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction,
cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of
vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the
molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of
conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous
system and cardiovascular cells, some other suggest more direct receptor–mediated molecular actions via autophagy or
ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial
cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown
ghrelin receptor–mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
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Introduction

Ghrelin, a 28 amino acid (aa) peptide, was first purified from
rat stomach in 1999 [1]. Although this peptide hormone is
produced predominantly in X/A cells or ‘ghrelin cells’ of gas-
tric oxyntic mucosa of duodenum in adults and ε cells of from
pancreatic islets in foetus [2], ghrelin mRNA and protein are
also distributed in different tissues including cardiomyocytes
and endothelium of blood vessels [3, 4]. In recent years, stud-
ies revealed a plethora of functions of ghrelin including appe-
tite stimulation, gut motility, gastric acid secretion, taste sen-
sation and glucose metabolism, sleep/wake rhythm, learning
and memory, reward seeking behaviour, and cardiovascular
protection [5]. Ghrelin induce GH secretion from pituitary,

called growth hormone secretagogue (GHS), and can regulate
hypothalamus-pituitary axis [6, 7]. In nomenclature, ‘ghre’
comes from the Proto-Indo-European root of the word ‘grow’,
and ‘relin’ is the short form that refers to its GH-‘releasing’
activities [8]. There are two major forms of ghrelin: biologi-
cally active acyl-ghrelin and non-active desacyl ghrelin [9]. It
bears N-octanoylation at its third serine residue, which is nec-
essary for active receptor binding to exert biological effects. In
healthy individuals, level of non-acylated serum ghrelin is
significantly higher compared with the bioactive acylated
ghrelin [10], but this balance is disrupted in pathological con-
ditions [11].

From the middle of the twentieth century, the heart has also
emerged as endocrine organ that maintain homeostasis in the
cardiovascular system and also other organs that control its
function [12]. The term ‘cardiokine’ is used to describe
proteins/peptides secreted from the heart, and particularly,
‘cardiomyokines’ which are secreted from cardiomyocytes
[13]. Cardiac cells bear GHS receptors, which indicate
ghrelin-mediated biological actions within the heart [14].
Basically, this gastric hormone establishes a crucial endocrine
link with the heart [15]. Ghrelin-mediated cardiovascular
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protective effects have been reported in both GH-dependent
and GH-independent manner [16–18].

In this review article, we will incript the most recent car-
diovascular protective evidences of ghrelin and the back-
ground mechanisms involved to highlighting its possible fu-
ture therapeutics potentialities.

Distribution, chemical structure,
and synthesis of ghrelin

Ghrelin is not exclusively but predominantly produced by the
gastric cells and also expressed in several different organs,
including the pancreas, kidney, testes, ovary, pituitary gland,
hypothalamus, intestine, lymphocytes, and/or placenta [3].
Ghrelin has a highly conserved sequence in almost all verte-
brates [19]. The ghrelin gene of human is located on the 3p25–
26 chromosome and consists of three introns and five exons
which encode a transcript of 511 bp, corresponding to 117
amino acid long precursor named preproghrelin [20]. The pre-
cursor of the hormone, proghrelin, yields twomature peptides,
ghrelin (28 aa) and obestatin (23 aa). Preproghreln enters the
endoplasmic reticulum, and signal peptide sequence of 23 aa
is removed by the enzyme prohormone convertase 1/3 (PC
1/3) to generate ghrelin [21]. The same enzyme perhaps plays
a critical role in processing of obestatin. A portion of ghrelin
pool, during maturation, undergoes post-translational acyla-
tion, commonly, octanoylation of the serine at the 3rd position
by the enzyme ghrelin O-acyltransferase (GOAT) [6, 22] (Fig.
1a). Other portion of ghrelin is called unacyl-ghrelin, but in-
active as it cannot bind to its receptor GHSR and exerts down-
ward molecular actions [23]. The presence of n-octanoyl
group modification at the side chain of Ser3 in the peptide
determines the potency of active ghrelin to bind with its re-
ceptor to be active form of ghrelin [24].

Ghrelin hormone receptors
in the cardiovascular system

Ghrelin receptor (GHSR) was first isolated from the pituitary
gland [25], and later, it was found in different parts of brain
and peripheral organs like the heart and pancreas GI tract [5]
[26]. The human GHSR gene is located on chromosome
3q26.2 and mostly conserved across species [27] and encodes
two splicing variant, GHSR-1A and GHSR-1B/non-GHSR-
1A [25, 28]. Interestingly, an additional subtype of ghrelin
receptor, different from classical GHSR-1A and 1B, has been
identified in H9C2 cardiomyocytes and endothelial cell.
Interestingly, both acylated and non-acylated ghrelin can bind
to GHSR-1B subtype [29]. GHSR-1A and GHSR-1B are 7
and 5 spanned trans-membrane G protein-coupled receptor,
respectively. Although functions of GHSR-1A are well

documented, that of GHSR-1B are still matter of conjecture
[25, 30, 31] (Fig. 1b). A minimal sequence is needed to acti-
vate GHSR-1A, which is a short N-terminus tetra- or penta-
peptides including the first Gly-Ser-Ser[n-octanoyl]-Phe ami-
no acids that constitute the ‘active core’ of ligand to bind
stringentically with its receptor and activate GHSR-1A-
mediated cascades [32]. GHSR-1A is an important player
for orexigenic effects of ghrelin but non-type GHSR-1A
may exert other physiological functions of ghrelin [33]. In
addition, a type B scavenger receptor CD36 (84-kD
glycoprotein) is found in rat and human cardiovascular tissues
[34–36] and can bind with synthetic peptidyl GHSs, such as
[125I] Tyr-Ala-hexarelin. However, potential connection be-
tween CD36 receptor and endogenous ghrelin down cascades
is still a matter of conjecture and requires further studies.
Using a [125I] His9-ghrelin-binding assay, the pervasiveness
of GHS receptors in the cardiovascular system has been con-
firmed in the human saphenous veins, coronary artery, left
ventricle, and right atrium [37].

Different subtypes of ghrelin receptors vary greatly in
structure as well as in their biological effects on the heart
and blood vessels. Elucidation of these receptors in the heart
and better understanding of binding sites for ghrelin might
lead to the development of new synthetic agents with all the
beneficial effects on the heart cells described further in this
article without the concomitant effects on GH release.

Cardiovascular protection by ghrelin

Endogenous and exogenous ghrelin is active in the heart as
well as in the blood vessels [38–42]. Chronic ghrelin admin-
istration heals left ventricular dysfunction and cardiac cachex-
ia significantly by vasodilatation in rat model [43] and pre-
vents cardiac hypertrophy, fibrosis after MI, and ischemia/
reperfusion injury resulting in reduced mortality rate in
in vivo and isolated murine heart disease model [44–46].
Ghrelin treatment also reduced arterial blood pressure, im-
proved ventricular function and endothelial dysfunction, and
significantly increased cardiac capacity and oxygen consump-
tion during exercise in patients with chronic heart failure
(CHF) [47]. Several beneficial effects of ghrelin on the car-
diovascular system are summarised in Fig. 2.

Ghrelin ameliorates myocardial infarction

Myocardial infarction (MI) is a term used when a patch of
cells die in myocardium due to reduced blood flow to heart
resulting in lack of oxygen supply. This occurs due to forma-
tion of plaques in interior walls of arteries [48]. Multiple ev-
idences indicate role of ghrelin-mediated cardioprotection in
post-MI rats by turning on pro-survival mechanisms [49].
Acyl ghrelin treatment for 2 weeks after MI reduces
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cardiomyocyte mortality and normalises heart rate by mitigat-
ing sympathetic activation and left ventricular function in mu-
rine models in vivo [44, 50]. Short-term exposure is effective
too, even in less than 2-h exposure after MI. The cell mortality
rate has attenuated in rat [51, 52]. In chronic MI patients, level
of plasma ghrelin has been reported to be significantly low
[53–55]. Increased mortality in post-MI condition was also
evident in ghrelin-KO mice which were efficiently reverted
by exogenous ghrelin treatment [55, 56]. Chronic administra-
tion of ghrelin very significantly suppressed the MI-induced
increase in heart rate and plasma norepinephrine conc. to
levels at par with sham-operated controls [44, 57]. Plasma
ghrelin [58] or locally producedmyocardial ghrelin was found
to be upregulated in isoproterenol-induced myocardial injury
and fibrosis as well as ischemic heart disease, acting via non-
GHSR-1A receptors [58, 59].

Ghrelin was reported to reduce the post-MI scar, ameliorate
inflammatory cytokines such as IL-1β and TNF-α, and regu-
late activinA/follistatin imbalance in rat models in vivo [60,
61]. Wang et al. showed ghrelin-mediated amelioration of
Ang II-induced myocardial fibrosis by upregulating PPAR- ,
and PPAR- antagonist GW9662 treatment counteracted the
effects [62]. In another study by Eid et al. [63], ‘Attenuation of

SOCS3’ and ‘induction of JAK2/STAT3’ were identified as
pathways by which ghrelin acts in post-MI remodelling. Anti-
apoptotic function of active ghrelin was also observed via
activation of Raf-MEK1/2-ERK1/2 or inhibiting oxidative
stress and inflammation via TLR4/NLRP3 signalling in ex-
perimental MI animal models [64, 65]. In post-MI rat’s aorta,
vasodilation and oxidative stress reduction by acylghrelin
were found to be mediated by inhibiting ACE-induced activa-
tion of NADPH-dependent oxidase and/or upregulation of
eNOS activity [66].

However, more in-depth investigations are required to un-
ravel therapeutic effects of ghrelin in early myocardial
infarction.

Ghrelin heals cardiac hypertrophy and fibrosis

Cardiac hypertrophy is one of the adaptive responses of the
heart in chronic hemodynamic overload and/or persistant MI
that increases the risk of heart failure [67]. Inflammatory cy-
tokines play pivotal roles in the progression of cardiac hyper-
trophy [68, 69]. Ghrelin attenuates those inflammatory cyto-
kines [70] and thus can be beneficial in cardiac hypertrophy.
Ghrelin can induce parasympathetic cardiac-vagal nerve

Fig. 1 Human ghrelin gene and
its products. a Post-translational
processing of the human ghrelin
gene. mRNA is transcribed to
preproghrelin, further processed
proghrelin precursor by
prohormone convertase 1/3 (PC
1/3). Proghrelin is cleaved at
arginine-28 of proghrelin,
forming mature 28 amino acid
long ghrelin peptide. Themajority
of the peptide remains unacylated
(des-acyl ghrelin) and a smaller
portion of it undergoes a post-
translational modification.
Esterification of a fatty acid on
Ser3 by the enzyme GOAT has
been done to generate acyl ghrel-
in. The 23 amino acid peptide
obestatin is also generated from
the proghrelin precursor. b
Acylated ghrelin can bind to
GHSR-1A, a 7 spanned GPCR
but desacyl ghrelin is unable to
bind to GHSR-1A and act via
some unknown receptors
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activity [71] which was attenuated in ventricular hypertrophic
condition [72]. Ghrelin-KO mice demonstrated worse patho-
physiological condition by attenuating cholinergic anti-
inflammatory pathway and parasympathetic nerve activity
but inducing pro-inflammatory IL-1β and IL-6 levels, which
were reversed significantly by exogenous ghrelin [46, 73].

The excess deposition of collagen in the heart ECM by
several stimuli is a common pathophysiological feature of
cardiac hypertrophy or cardiac remodelling after heart injury
[74]. Both acylated and unacylated ghrelin inhibited cardio-
myocyte death, and production of excess ECM proteins
in vivo in doxorubicin-induced cardiomyopathy [75, 76]
was observed. Significant anti-fibrotic effects of ghrelin have
been also demonstrated in other experimental models of car-
diac injury, such as isoproterenol administration, myocardial
infarction (MI), and spontaneous or diabetes-associated hy-
pertension [60, 77–80]. Exogenous -adrenergic agonist iso-
proterenol induces heart injury that also leads to fibrosis and
increases myocardial ghrelin expression and plasmatic

acylated ghrelin levels [77, 78], although the mechanisms of
such protective measure are still unclear. Desacyl ghrelin also
displays anti-fibrotic actions by GHSR-independent pathways
[78] and significantly blunts the induction of MMP-2 and
MMP-9 that could be inferred as inhibition of overall fibro-
blast activity [60]. The synthetic GH-secretagogue, hexarelin,
also prevents cardiac fibrosis by inducing MMP-2 and MMP-
9 activity in spontaneously hypertensive rats [79]. However,
desacyl ghrelin was shown to have no effect on other MMPs
like MMP-8 and MMP-13 which are also fibrotic mediators
[80]. In db/db mice, unacylated ghrelin impaired collagen ac-
cumulation by upregulating adiponectin expression [80],
which is a well-known regulator of cardiac hypertrophy and
fibrosis [81, 82].

Ghrelin and cardiac cachexia

Cardiac cachexia (CC), severe weight loss due to heart dis-
ease, disrupts catabolic and anabolic balance of the body [83],

Fig. 2 Summary of role of ghrelin as cardioprotective peptide. a
Schematic diagram showing ghrelin and desacyl ghrelin–mediated cardi-
ac protection in different diseases like myocardial infarction, hypertro-
phy, fibrosis, cardiac cachexia, diabetic cardiomyopathy, arrythmia, and
I/R injury. bActions of ghrelin on vasculature showing healing properties
in hypertension and coronary artery disease and atherosclerosis and pro-
moting angiogenesis and vasodilatation. Upward arrow signifies upregu-
lation and downward arrow signifies downregulation of particular mole-
cule or pathway depicted in the figure. MMP, matrix metalloproteinases;
IL-2, interleukin-2; TNF-α, tumour necrosis factor-α; GH, growth hor-
mone, PPAR-γ, peroxisome proliferator-activated receptors-γ; JAK-2,

janus kinase-2; STAT-3, signal transducer and activator of
transcription-3; TLR4, Toll-like receptors-4; NLRP3, NLR family pyrin
domain containing 3; AMPK, AMP-activated protein kinase; ERK1/2,
extracellular signal-regulated kinases 1/2, PKC, protein kinase-C; Ca2+,
calcium ions; NO, nitric oxide; N-BNP, N terminal-proB-type natriuretic
peptide; eNOS, endothelial nitric oxide synthetase; ET-1, endothelin-1;
Flk-1, VEGF receptor 2; Flt-1, VEGF receptor 1; VEGF, vascular endo-
thelial growth factor; Akt, protein kinase B; miR, microRNA, L-NAME,
N(δ)-nitro-L-argininemethyl ester; LC3 I, microtubule-associated protein
1A/1B-light chain 3; CD40, cluster of differentiation-40; NFκ-β, nuclear
factor kappa-light-chain-enhancer of activated B cells
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promotes hormonal changes and cytokine activation [84, 85],
and in turn, provokes systemic tissue wasting, skeletal muscle
loss, and bone loss too [86–89]. Ghrelin secretion has been
proved to counter energy deficit against starvation-related ca-
chexia [90] and control adaptive feeding response [91]. Being
a strong adipogenic and orexigenic molecule, it induces
weight gain and adiposity [92] by increasing not only in body
weight and body fat mass but also in lean tissue mass and
reduction of myostatin plasma levels [93]. The resistance of
heart failure (HF) patients to the effects of appetite-stimulating
ghrelin was put forward as one of the possible contributing
factors in the development of cardiac cachexia [94]. Patients
with HF and CC have significantly higher plasma ghrelin
levels than in those without CC and healthy subjects, which
indicates a compensatory or counteracting mechanism condi-
tion of anabolic/catabolic imbalance in CC [95]. Exogenous
ghrelin found to be beneficial in 2 ways as it increases cardiac
output and decreases systemic vascular resistance in patients
with cardiac cachexia [96, 97]. In addition, exogenous admin-
istration of ghrelin has been observed to elicit a potent, long-
lasting stimulation of food intake via induction of neuropep-
tide Y (NPY) neurones in the hypothalamic arcuate nucleus
[98–100]. Ghrelin analogues BIM-28131 and BIM-28125 im-
prove body weight [43], increasing appetite in experimental
heart failure model by regulating MuRF-1 and MAFbx [101]
as well as myostatin [102] expression.

These results raised the possibility that increased plasma
ghrelin may play a compensatory physiological role when
balance of anabolic/catabolic factors is disrupted in cachectic
patients with chronic HF.

Ghrelin and diabetic cardiomyopathy

It is well established that individuals with diabetes have a
significantly higher risk of developing cardiovascular diseases
including cardiomyopathy (CM) and heart failure [103, 104].
Chronic heart failure is the reason for ~ 70% of diabetes-
related deaths [105]. Diabetes can directly cause myocardial
injury, resulting in a distinct disease called ‘diabetic cardio-
myopathy (CM)’. Data from epidemiologic, experimental,
and clinical studies have shown diabetes-related structural
and functional cardiac changes including higher left ventricle
(LV) mass, wall thickness, and/or arterial stiffness [106]
caused by deposition of advanced glycation end-products
(AGEs) and collagens [107, 108]. The cardioprotective effects
of hexarelin and ghrelin have been well investigated in dia-
betic animal models, and its beneficial roles are evident in
several studies [109–113].

Firstly, the acylated ghrelin increases blood glucose con-
centrations and decreases insulin in rodent model [114, 115],
which are not favourable for diabetic individuals. In contrast,
desacyl ghrelin decreases glucose release and improves insu-
lin sensitivity [116, 117], stimulating lipid accumulation [118]

in adipocytes. Preliminarily, desacyl ghrelin has been demon-
strated to have beneficial effects on cardiovascular system and
metabolism of glucose and lipid [119, 120]. Obestatin, another
product of pro-ghrelin, effectively protected STZ-induced
myocardial dysfunction [121]. A negative correlation between
plasma ghrelin was documented in hypertensive population
[122] and obese patients [123]. Exogenous ghrelin adminis-
tration to overweight patients strongly improves their insulin
sensitivity [124] and that protects the heart by inhibiting ex-
cessive collagen deposition in ECM and inducing autophagic
signalling via the pro-survival AMPK/ERK1/2 signalling
pathways in db/db mice [80]. Desacylated form is unable to
stimulate release of growth hormone (GH) [28] and indicates
that its role in diabetic cardiomyopathy protection is via non-
GHSR-1A receptors. The therapeutic value of desacyl ghrelin
in diabetes management would be potentially high. Desacyl
ghrelin treatment alleviated diabetic cardiomyopathy by im-
proving the contractile function of left ventricle, reducing car-
diac fibrosis, and activating cardiac autophagy [80].

Ghrelin-mediated attenuation of hypertension

Hypertension can be defined as a chronic elevation of system-
atic arterial pressure above a certain threshold value that
causes a cardiovascular risk [125]. In a large middle-aged
hypertensive cohort study, significant negative association be-
tween ghrelin and blood pressure has been observed [126].
Furthermore, ghrelin gene Arg51Gln mutation was proved
to be an independent risk factor of hypertension [127]. In
contrast, plasma ghrelin levels are significantly increased in
idiopathic pulmonary hypertension (PH) and are positively
correlated with NO levels, levels of N-BNP, pulmonary artery
systolic pressure, and RV diameter [128]. Microinjection of
ghrelin into the nucleus of the solitary tract of rats significantly
decreased the mean arterial pressure and heart rate, but in
contrast, unilateral microinjection of ghrelin into the area
postrema, rostral, and caudal ventrolateral medulla caused
no significant changes in the mean arterial pressure and heart
rate [129]. In pulmonary hypertension rat models, it signifi-
cantly attenuated hypertension, pulmonary vascular remodel-
ling, right ventricular hypertrophy, right ventricular diastolic
disturbances, wall thickening of peripheral pulmonary arter-
ies, and also, ameliorated left ventricular dysfunction [130].

This correlation between ghrelin and hypertension is mud-
dled when these parameters were assessed during pregnancy.
In normotensive pregnant women, ghrelin was negatively cor-
related with blood pressure, whereas in hypertensive non-
pregnant women, there was a significant positive correlation
[131]. In spontaneously hypertensive pregnant rats, plasma
ghrelin levels were significantly higher compared with con-
trols [132]. But ghrelin level in the stomach is unchanged, and
the level of ghrelin mRNA in the placenta was lower in the
hypertensive animals, indicating possibly a different local
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production of ghrelin during pregnancy is regulated different-
ly [132].

Ischemia-induced injury and arrhythmias control by
ghrelin

Ischemia/reperfusion (IR) injury may be defined as damage of
cells that results from a period of ischemia followed by re-
establishment of blood supply at the ischemic site [133]. It is a
significant cause of myocardial morbidity after an acute MI
[134–136]. Ghrelin has been shown to be beneficial against I/R
injury in numerous organs including the liver, kidneys, intestines,
spinal cord, and pancreas in animal models [137–141]. In the
heart, both ghrelin and its analogue hexarelin have been shown
to exert cardioprotective effects after I/R injury [110, 111].
Increased coronary flow, heart rate, and LV systolic pressure,
as well as reduced LV end-diastolic pressure and myocardial
release of lactate dehydrogenase and myoglobin, have been ob-
served after administration of ghrelin during I/R injury in isolated
rat hearts [45]. Preservation of electrophysiological properties by
ghrelin by regulating both voltage-gated L-type calcium and so-
dium currents has also been reported in isolated I/R injury heart
model [142]. The mechanism of protection provided by GHSs
after I/R injury is GH independent, which results in an increased
maximum binding capacity of ghrelin on sarcolemmal mem-
branes [45]. Endoplasmic reticulum stress inhibition and
blocking of pro-apoptotic processes through a Ca2+/calmodulin/
AMPK pathway are one of the major mechanisms of actions of
ghrelin [143]. GHSs were also shown to prevent the phosphory-
lation of pro-apoptotic proteins p38, c-Jun NH (2)-terminal ki-
nase, and caspase-9 [142]. Other potential pathways including
protein kinase C or recovering sarcolemmal Ca2+ are induced
[109, 111].

In ghrelin KOmice, malignant arrhythmias worsen that can
be reversed through exogenous ghrelin replacement [50].
Ghrelin can significantly decrease vulnerability of ventricular
arrhythmias in rat MI model, by increasing expression of
connexin-43 in the myocardium [144, 145]. Intravenous ad-
ministration after ligation of the left coronary artery amelio-
rates ventricular tachyarrhythmia preventing the loss of phos-
phorylated connexin-43 through higher parasympathetic ac-
tivity of vagal nerve [145] and adrenergic response [50, 56,
146].

Vasodilatation and hemodynamic effects of ghrelin

Endothelial cells are very important constituents of blood ves-
sels which play critical role in cardiovascular homeostasis
[147]. Immuno-reactive ghrelin protein has been identified
in endothelial cells of the human artery and vein [40] that
suggests this peptide may be involved in endothelial function
in vascular system. Low level of ghrelin is directly associated
with high blood pressure [126]. Serum ghrelin level was found

to be significantly lesser in obese patients having metabolic
syndromes with impaired endothelial function [123, 148].
Intravenous injection of acyl-ghrelin (10 μg/kg body weight
dose) to 6 healthy volunteers in randomised fashion leads to
beneficial hemodynamic alterations and increased cardiac out-
put without any heart rate alteration [149].

There are several hypotheses of ghrelin-mediated vaso-
dilation that have been proposed so far. Vascular homeo-
stasis is maintained by balance of endothelium-derived
relaxing factor nitric oxide (NO) and contracting factors,
endothelin (ET)-1 [150]. Intravenous ghrelin replacement
reduces blood pressure in human as well as rabbit without
any change in heart rate [149, 151]. Further, Okomura et al.
[152] explained this event is a GH/insulin-like growth fac-
tor (IGF)-I/nitric oxide (NO)-independent mechanism.
Interestingly, ghrelin (0.1-300 nM) has been demonstrated
as a good vasodilator in denuded mammary gland artery,
which indicates another endothelial cell-independent mech-
anism of vasodilatation [153].

In contrary, ghrelin exposure stimulates NO production in
human and bovine aortic endothelial cells in vitro in a time-
and dose-dependent manner that can be blocked byGHSR-1A
receptor blocker [d-Lys3]-GHRP-6 [154]. Chronic ghrelin
treatment in isolated aortic rings of GH-deficient dwarf rats
significantly increased endothelium-dependent relaxation that
has been reversed by inhibiting L-NAME as compared with
those given placebo. This effect further demonstrated that
treatment with ghrelin increased aortic endothelial NOS ex-
pression, and this peptide-mediated vasodilation can be re-
versed by selective eNOS inhibitors [155]. Ghrelin decreases
sympathetic nervous outflow upon stimulation of the ghrelin
receptor in neuronal cells of the nucleus of the solitary tract,
and microinjection of ghrelin at a very low dose in this area
was sufficient to induce an average drop in mean blood pres-
sure [126]. Intracerebroventricular injection (ICV) of ghrelin
(1–5 nM) decreased mean arterial pressure in rabbits [151].

Taken together, these results suggest that ghrelin binds to
GHSR-1A and can act as vasodilator via both NO-dependent
and NO-independent pathways.

Ghrelin and coronary artery disease, atherosclerosis

Several studies support the notion that high ghrelin is linked to
reduced early atherosclerosis [156–159]. However, relation-
ship between ghrelin concentration and intima-media thick-
ness (IMT) in coronary atherosclerosis human patients
showed conflicting results [156–158, 160, 161]. The positive
association between carotid IMT and plasma ghrelin levels
was also reported [160, 161]. In a long-time follow-up study
spanning 19 years involving over 1000 individuals from
Finland, a high plasma ghrelin level was shown to protect
against coronary heart disease [162].
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Ghrelin to GHSR-1A binding was found to be upregulated
up to 3- to 4-fold in coronary arteries and saphenous vein
grafts of atherosclerotic rat model [163]. Ghrelin controls ath-
erosclerotic pathogenesis, attenuating inflammation, endothe-
lial dysfunction, and endoplasmic reticulum stress [164], and
increases NO bioactivity and eNOS levels [123, 155]. In ad-
dition, ghrelin reduces inflammatory cell activation on the
endothelial by NF-κB, CD40, vascular cell adhesionmolecule
1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-
1) in mice [165–168]. Moreover, ghrelin receptor deficiency
has been found to aggravate atherosclerotic plaque instability
and worsen vascular inflammation, suggesting a possible pro-
tective mechanism for ghrelin against atherosclerosis and its
complications.

In contrast, different age and grade of atherosclerosis in the
patients of these studies may explain discordant findings. In
renal transplant patients, elderly hypertensive patients and pa-
tients with metabolic syndrome, both acyl-ghrelin and des-
acyl ghrelin were found to be negatively correlated with
IMT [157–169]. Reduced plasma ghrelin levels were closely
related to angiographically detect complex lesion morphology
in patients with coronary artery disease [159]. Another study
revealed high plasma ghrelin concentrations to be significant-
ly correlated with increased carotid artery IMT inmiddle-aged
(40–60 years) males [160]. These contradictory findings mud-
dled the hypothesis and led to questions about whether the
positive changes by ghrelin in atherosclerosis are multidimen-
sional and case based.

Ghrelin promotes angiogenesis

Angiogenic properties of ghrelin in ischemic tissue are well
established in multiple studies [151, 170–173]. Ghrelin signif-
icantly induce vascular endothelial growth factor (VEGF) ex-
pression in the peri-infarct zone compared with the control
group [171]. This pro-angiogenic property was regulated by
GHSR1A-mediated AMPK/eNOS pathway and upregulating
of HIF1α, VEGF, and its receptors Flk-1, Flt-1 expressions
[172]. Knockdown of GHSR-1A by siRNA markedly de-
creased VEGF along with Akt and AMPKmRNA expression.
In conclusion, GHSR-1A gene therapy improves cardiac re-
modelling and function in rats after MI. This may be a new
anti-remodelling target in MI patients [15]. Activation of pro-
angiogenic and anti-fibrotic microRNAs (miRs) are key cel-
lular pathways underpinning the protective effect of ghrelin.
miR-126, expressed in endothelial cells, accelerates angiogen-
esis by increasing ERK as well as PI3K/Akt/VEGF signalling
pathway, inhibiting Sprouty-related protein (SPRED1) [174,
175]. Enhanced VEGF activity leads to activation ofmiR-132,
ultimately leading to Ras activation, and promotes neovascu-
larisation [176]. Selective inhibition of pro-angiogenic miRs
in vitro implicates miR-126 as a possible upstream modulator

for miR-132, although future in vivo knockdown studies are
needed to confirm this notion [173].

In contrast, several reports have refuted the angiogenic ef-
fects of ghrelin in diabetic or diet-induced obese mice
[177–179]. miR quantitative analyses have been showed no
activation of proangiogenic miR-132 in the saline-treated
mice, whereas miR-132 induces the phosphorylation of
CREB t h r o ugh i n h i b i t i o n o f a n t i - a n g i o g e n i c
p120RasGTPase-activating protein [180–182]. In addition,
ghrelin also inhibited the activation of anti-angiogenic miR-
206 and miR-92a. miR-206 demonstrated negative regulation
of angiogenesis via direct inhibition of VEGF [183], while
miR-92a, another endothelial cell-specific miRNA, negatively
regulates integrin, α5, which is essential for the activation of
Akt [184]. These contradictory results indicate ghrelin-
mediated angiogenesis may be multifactorial in obese mice
and depends on other metabolic actions too.

Ghrelin in pathophysiology of chronic heart failure

Chronic heart failure (CHF) is the final outcome of most
cardiovascular diseases and major cause of death in CVD
patients [185, 186]. Ghrelin has been reported to effectively
improve cardiac performance under different pathological
conditions of CVD [187, 188]. In CHF-prone patients, short-
term intravenous ghrelin infusion increased mean arterial
pressure without affecting heart rate [189]. Endogenous
ghrelin was attenuated in atria and ventricles of humans
with CHF, while GHSR-1A mRNA was increased, possibly
because of compensatory mechanism of adaptation [38].
Consistent with other results described before, ghrelin
restores cardiac function and appetite in patients with end-
stage CHF and cardiac cachexia [190], possibly as beneficial
response to the anabolic-catabolic imbalance [95, 191]. Active
exogenous ghrelin administration stimulates fatty acid
oxidation and inhibits glucose oxidation, thereby revering
the altered energy substrate utilization observed with pacing-
induced heart failure in animal models [192], and significantly
decreases systemic vascular resistance and increases the
cardiac output and stroke volume in patients [149, 193].
Chronic ghrelin administration decreased plasma catechol-
amine levels that regulate sympathetic nervous control of
the heart [56], improved ejection fraction in the left
ventricle from 27 to 31% very fast, and increased the peak
workload, oxygen consumption during exercise in CHF pa-
tients [47].

However, these beneficial effects need much larger-scale
controlled clinical trials to evaluate role of acyl and des-acyl
ghrelin on CHF. If long-term and/or short-term administration
of ghrelin proves feasible and significantly effective compared
with placebo, this hormone might offer a new miraculous
option for the difficult treatment of CHF.
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Mechanism of actions

We discussed differential cardioprotective roles of ghrelin and
promoted a potential therapeutic role of ghrelin in cardiovas-
cular disease. Now, question is how ghrelin exerts such ben-
eficial effects during efficient types of cardiac-patho-physiol-
ogy?We shall discuss some of the basic mechanism of actions
for evidences of ghrelin-mediated cardioprotection with sche-
matic diagram (Fig. 3).

Autophagy

Cardiomyocytes critically regulate its own protein synthesis,
processing, and elimination (proteostasis) for maintaining ho-
meostasis due to their limited ability to divide, and autophagy
plays a pivotal role to regulate proteostasis of cardiac cells
[194, 195]. Cardioprotection of ghrelin is associated with en-
hanced autophagy and removal of dysfunctional mitochondria
after MI and calcification attenuation in vascular calcification
model [59, 194, 196]. Pharmacological stimulation of autoph-
agy with rapamycin (an mTOR inhibitor) during myocardial
ischemia protects against post-infarction pathophysiological

remodelling [197]. There are several evidences that inhibition
of GOAT (ghrelin forming enzyme) attenuates lipotoxicity by
restoration of autophagy. This in turn stimulates restoration of
AMPK-mTOR or inhibition of nuclear factor-kβ in NAFLD
and other disease models [198–200]. Interestingly, IP injec-
tion of desacyl ghrelin in obese, db/db T2DM mice protects
against diabetic cardiomyopathy by enhancing autophagy via
the pro-survival AMPK and ERK1/2 pathways [80].
Similarly, chronic IP administration of exogenous ghrelin im-
proves autophagy in vascular smooth muscle cells from rats
with vascular calcification in an AMPK-dependent manner
[196]. Nutrient depletion due to fasting, during the ischemic
phase activates AMPK, which in turn, inhibits mTOR, the
major inhibitor of autophagy in obese mice [201]. Starvation
leads to ghrelin over expression [202] and repetitive starvation
during hypoxic heart injury, autophagy-lysosome machinery
by inducing nuclear translocation of transcription factor EB
(TFEB) [197]. During acute cardiac ischemia, mostly, desacyl
ghrelin markedly attenuates infarct size, in part, by stimulating
autophagy to remove dysfunctional mitochondria afterMI and
via the pro-survival cellular AMPK/ERK1/2 signalling path-
way mice models of diabetic cardiomyopathy [59, 80].

Fig. 3 Mechanisms of actions (MOA) of ghrelin and/or desacyl-ghrelin
on a cardiomyocyte. Autophagic, ionotropic, and anti-apoptotic pathways
and their regulation are mentioned here. Plus sign (+) signifies upregula-
tion and negative sign (−) signifies downregulation of the particular path-
way with arrowheads. AG, acyl-ghrelin; DAG, desacyl-ghrelin(in yellow
oval shape); GHSR-1, ghrelin receptor-1; CD36, cluster of
differentiation-36; Gq, Gq protein alpha subunit; PLC, phospholipase-

C; DAG, diacyl glycerol (in purple box); PIP2, phosphatidylinositol
biphosphate; JNK, c-Jun N-terminal kinase; PI3K, phosphoinositide 3-
kinases; Cyt-c, cytochrome-C; ROS, reactive oxygen species; Bax, Bcl-2-
associated X protein; Bak, BCL2-antagonist/killer; Bcl-2, B cell lympho-
ma 2 protein; AMPK, 5′ AMP-activated protein kinase; Atg-12, anti-
thymocyte globulin-12
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Ghrelin and some GHS treatment significantly attenuated
CoCl(2)-induced hypoxic injury in H9c2 cells by increasing
cell autophagy that in turn leads to better survival of cells
through ROS inhibition, mTOR induction, and AMPK stim-
ulation [76, 203, 204]. Ghrelin stimulated expression of genes
including Beclin1, Atg12, Map1LC3A, and LC3 that trig-
gered removal of dysfunctional mitochondria [59, 80] and
finally activated cardiomyocyte AMPK [205], a pivotal regu-
lator of cardiac autophagy [206].

Ionotropic action

Several in vivo and in vitro studies have suggested ghrelin as
inotropic regulators in cardiomyocytes [207–209].
Cardiomyocytes express at least two subfamilies of functional
Kca channels [210–212]. The main current responsible for
action potential duration is Ca2+-independent transient out-
ward K+ current (Ito) [213, 214] and this Ca2+ influx through
L-type Ca2+channel opening/closing affects myocardial con-
tractility [214]. Synthetic GHSs increased Ca2+influx via
voltage-gated Ca2+channels in cultured neonatal as well as
adult rat cardiomyocytes [215]. Similarly, ghrelin-stimulated
Ca2+ influx leads to direct increase in Ca2+ channel conduc-
tance and/or decrease in K+channel conductance has been
decreased, resulting to prolonged depolarization [216].
However, it is difficult to establish whether this ionotropic
regulation is directly involved in enhancement of cardiac out-
put or not [43, 149]. Scientists’ hypothesised ghrelin has neg-
ative inotropic and lusitropic effects via GHSR-1A but limited
in right ventricle in vivo [216, 217]. It increased the amplitude
of L-type Ca2+ transients and ICa, and L which trigger Ca2+-
dependent cellular processes that are abrogated by GHSR-1A
blocking [218]. Ghrelin can regulate sarcoplasmic reticulum
(SR) Ca2+ ATPase (SERCA2a); in turn, it induces calcium
reuptake into the SR to increase cardiac relaxation [219].
Pretreatment with combination of apamin + ChTX, and Kca

channels blocker significantly attenuated the negative inotro-
pic effect of ghrelin, both in normal and/or hypertrophic myo-
cardium [216]. Ghrelin and hexarelin induced a transient in-
crease followed by a reduction of contractile force and isolated
ventricular myocyte shortening, Ca2+ transients and Ica in
papillary myocytes in vitro [220]. This negative inotropic ef-
fect of hexarelin [221] was reduced by blocking nitric oxide
(NO) synthesis [208, 222]. In contrast, hexarelin did not show
any significant effect on calcium transients and L-type Ca2+

current (ICa), in isolated ventricular cells [134, 209]. Taken
together, these findings indicate that the effects of hexarelin
may act via nitric oxide (NO) release and prostacyclin (PGI2)
from the endocardial endothelium, rather than direct effects on
cardiomyocytes [209]. Infusion of ghrelin was also attenuated
by inhibition of Kca channels, suggesting that these channels
may play critical role in ghrelin-induced vasodilation [223].
All these data provide further support that cardioprotection by

ghrelin is mediated via inotropic effect and reinforcing the
importance of Ica and Kca.

Anti-apoptotic pathways

Cardiomyocyte apoptosis is another major hallmark of
cardiac diseases. The anti-apoptotic effects of acyl and
des-acyl ghre l in have been conf i rmed in H9c2
cardiomyocytes and line HL-1 cell line through MAPK-
and PI3K/Akt-dependent pro-surviving pathways via un-
known n on-GHSR-1A receptor [29, 75, 224, 225]. Acyl-
ghrelin prevents doxorubicin-induced cardiac intrinsic cell
death by restoring IL-6/JAK2/STAT3 signalling and inhi-
bition of STAT1 and/or by activating anti-oxidant en-
zymes superoxide dismutase and catalase [226, 227].
Ghrelin preserve mitochondrial membrane potential and
energy metabolism. Furthermore, it upregulates anti-
apoptotic proteins such as bcl-2 and inhibits cytC and
the activation of the NF-kB pathway [227, 228]. Ang II-
induced apoptosis of H9c2 cells is attenuated by regulat-
ing ER stress pathway [229], exerting a cardioprotective
role against Ang II-induced cardiomyocytes apoptosis
[230]. Obestatin, ghrelin gene-derived peptide, has also
been reported to be anti-apoptotic in several cell types,
including cardiomyocytes by PKC, PI3K, and/or
ERK1/2 cascade, but mechanism of action is still a matter
of conjecture [231]. Other than these pathways, ghrelin
can also target miR-208, a crucial cardiac miRNA in-
volved in the regulation of apoptosis [232].

Anti-inflammatory pathway

Ghrelin also exerts potent anti-inflammatory effects. T lym-
phocytes express both ghrelin and GHSR-1A, while ghrelin
secretion is increased upon T cell activation; it exerts its effect
by inhibiting IL-1β, IL-6, and TNF-α release in T cells and
monocytes [233]; NF-κB, CD40, VCAM-1, and ICAM-1 is
reduced in mice endothelial cells of blood vessels [165–168].

Interestingly, ghrelin can also counteract cytokine-induced
apoptosis [60]. Same anti-inflammatory effect has been ob-
served in endothelial cells through reducing NF-kβ activation
by ghrelin and decreases inflammatory cytokines in response
to endotoxin [168]. Ghrelin levels significantly decreased dur-
ing sepsis, while exogenous administration in a rat model
reduced organ injury by attenuating inflammation [70].

Autonomic nervous system regulation

Physiologically, ghrelin is permeable to blood-brain barrier
(BBB) [234], acyl-ghrelin mainly can move brain-to-blood
direction, and des-acyl ghrelin enters the brain by non-
saturable transmembrane diffusion [235]. ICV microinjection
of 1 nmol dose attenuated arterial pressure and heart rate as
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sympatho-inhibitory response [151] in rabbits. Similarly, mi-
croinjections of ghrelin (20 pmol) into the nucleus of the sol-
itary tract in anaesthetised rats (NTS) decreased arterial blood
pressure and renal sympathetic nerve activity [129, 236]. Des-
acylated ghrelin acts via non-GHSR-1A receptor in bulbar
nucleus of the brain [236]. Exogenous treatment of [D-Lys-
3]-GHRP-6, a GHS-R1A antagonist inhibited by α- and β1-
adrenoreceptor-mediated attenuation [237]. Ghrelin-mediated
regulation of sympathetic nervous system, in turn, modulates
vascular tone.

Vagal afferent nerve terminals are present in the heart and
locally produced ghrelin can send signals to the NTS [44, 50].
Peripheral administered ghrelin suppresses LF/HF ratio and
cardiac sympathetic nerve activity (CSNA) in animal model
of MI [44, 51, 52]. MI induces CSNA, which had been
prevented and decreased to pre-MI level when treated with
ghrelin (150 μg/kg, sc) in rat [51]. Using a microdialysis tech-
nique, Shimizu et al. [238] demonstrated more directly that
centrally administered ghrelin activated cardiac vagal nerve in
anaesthetised rabbits. In ghrelin-KOmice, CSNA is disrupted,
leading to arrhythmias after MI [50]. In addition, ghrelin can
also modulate para-sympathetic nerve activity [71] as ghrelin
administration at lateral cerebral ventricle did not alter dialy-
sate norepinephrine concentrations but significantly increased
dialysate acetylcholine concentrations [238]. Thus, ghrelin
can inhibit excessive activation of CSNA, and in turn, activate
cardiac parasympathetic activity to control heart (Fig. 4).

Age-related decline of ghrelin and association
of cardiac complications

Most of the cohort studies revealed a reduction in circulating
ghrelin in age-dependant manner [239–241]. Studies revealed
significantly low circulating acyl-ghrelin levels and growth
hormone secretion in the elderly [242, 243] although some
showed no difference in ghrelin levels between young and
elderly females [244]. Decline in ghrelin levels in elderly peo-
ple aged 67–91 years during fasting, relative to young controls
aged 27–39 years, has been reported [243]. Circulating des-
acyl ghrelin even improves prediction of cardiovascular dis-
ease in older hypertensive patients [245]. There is a significant
negative correlation between three points, the mean fasting
plasma ghrelin concentrations, BMI, and serum insulin levels
in all groups of subjects [243]. However, the reduction in
ghrelin levels was found to be independent of the differences
in body composition or insulin resistance in this study [240].

Decline in gastric ghrelin mRNA levels in 19-month-old
mice was observed than that of young ones [246].
Furthermore, fasting-induced increases in ghrelin were less
robust in ageing comparable between 4 and 25 months of
age [247]. In contrast, animal model studies in both Wistar
and Lou C/Jall rats showed significant increase in ghrelin
levels with ageing [248]. Similar increases in both total and
active acyl-ghrelin were detected in C57BL/6J mice [249,
250]. Even Liu et al. [246] found no correlation between total

Fig. 4 Autonomic nervous
control of the heart regulated by
ghrelin. Schematic diagram
showing cardiac vagal afferent
nerve terminals send signals to
nucleus of the solitary tract (NTS)
that in turn control the vasomotor
centre of the medulla. Ghrelin in-
hibits the sympathetic nerve ac-
tivity, upregulates parasympa-
thetic activity, and protects the
heart from excessive damage
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ghrelin and the age of C57BL/6 mice up to 6 months old.
Increased ghrelin signalling promotes survival in mouse
models of human ageing through activation of sirtuin1
[251]. Increased levels of plasma ghrelin have been proposed
to be attributed to the decline of its receptor (and/or post-re-
ceptor) functions in senescent animals [250].

As we know, there are direct evidences of increased risk of
different cardiovascular diseases in aged population [252].
More studies should be done if there is any direct effect of
ghrelin- and age-dependant cardiovascular complications.

Clinical studies substantiate ghrelin
to combat heart failure

The various experimental studies on cardiovascular effects of
GHS and mode of actions have been described above in differ-
ent headings to evaluate their potential role in the treatment of
heart failure. However, very limited number of published data
on human clinical trials is present till date. Infusion of ghrelin in
low dose (0.1 μg/kg/min) for a short duration of 60 min in 12
CHF patients significantly increased mean arterial pressure,
cardiac index, and stroke volume index without altering heart
rate [189]. In another study, 10 patients with congestive heart
failure were treated with ghrelin intravenously for 3 weeks, and
LVEF and LV mass were significantly increased but LV end-
systolic volume was decreased [47]. In addition, ghrelin treat-
ment also helped to increase peak workload as well as peak
oxygen consumption during extensive exercise, indicating im-
provement in systolic function and exercise capacity [47].
Recently, Sullivan et al. [253] described role of ghrelin/
GHSR system before and after heart transplantation in human.
Cardiac tissues were obtained from 10 patients undergoing car-
diac transplant at the time of organ harvesting; GHSR and
ghrelin both were strongly positively correlated in diseased
heart, and both markers were negatively correlated with left
ventricular ejection fraction [253]. In a randomized,
doubleblind, and placebo-controlled crossover study, physio-
logical increments of ghrelin concentration significantly in-
crease left ventricular myocardial systolic velocity and
endothelium-dependent vasodilatation in humans [41]. A large
ghrelin bolus significantly increased stroke volume and de-
creased systemic vascular resistance and mean arterial pressure
(MAP) in healthy volunteers [254], but in another study, a
similar dose of ghrelin increased LVEF without change in
MAP [193]. Not only in healthy volunteers, even in a pilot
study with 62 patients of heart failure seems to be better with
preserved ejection fraction with ghrelin treatment [255]. Higher
and repeat dose infusions of ghrelin significantly decreased
pulmonary capillary pressure along with mean arterial pressure
and vascular resistance. Whereas, in same study, cardiac index,
LVEF, and stroke volume have been increased significantly;
these changes were associated with improved exercise capacity

[47, 189]. In healthy men, intra-arterial ghrelin infusion leads to
increased forearm vasodilation, independent of nitric oxide
[152], and increase endothelium-dependent vasodilator re-
sponses in patients withmetabolic disorders [123] by increasing
availability of nitric oxide [256]. Randomized, blinded, and
placebo-controlled unacylated ghrelin infusion protects endo-
thelial cells and promotes for vascular remodelling in patients
with type 2 diabetes mellitus [257]. But more long-term, mul-
tifactorial placebo-controlled human trials are required to estab-
lish therapeutic potential of ghrelin in CVD.

Conclusion and future direction

Ghrelin and its multiple physiological functions represent one
of the extraordinary recent discoveries, initially concerning the
energy balance regulation, but more recently, its
cardioprotective effects are cropping up. Ghrelin and its recep-
tors are widely distributed in cardiomyocytes as well as in
blood vessels, including endothelial cells. Here, in this review,
we tried to present a large body of recent homogeneous litera-
ture that demonstrated association of ghrelin with cardiovascu-
lar system along with its mechanism of actions. This miracu-
lous peptide exerts cardioprotective effects, protection from
ischemia/reperfusion injury, cardiac cachexia, cardiac hypertro-
phy and fibrosis, attenuation of left ventricular remodelling
following myocardial infarction, improvement of left ventricu-
lar function, and cardiac capacity in patients with chronic heart
failure. At the level of vasculature, it also plays a pivotal role on
endothelial function, in particular, anti-oxidant, anti-inflamma-
tory, and anti-apoptotic effects by improving NO availability
and restoring the endothelin-1/nitric oxide imbalance. At higher
doses, it also decreases blood pressure, by modulating sympa-
thetic nervous system. In particular, these beneficial cardiac
effects and vascular protection indicate that ghrelin is a potent
candidate for the treatment of congestive heart failure and
should be explored more for human welfare. Synthetic ghrelin
that mimic the ghrelin-related effects and can target its receptors
is well established and used in metabolic disorders and obesity
treatment. But this peptide can act as GH-independent pathway
too in cardiomyocytes and that is much neglected in science till
date. Therefore, more studies are encouraged to use ghrelin as a
potent CVD drug from bench to bedside.
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